شبکه ی عصبی ژنتیکی بر اساس داده کاوی در پیش بینی بیماری های قلبی بوسیله ی عوامل خطر

 (سیارک) تکنیک های داده کاوی به شکل گسترده ای در سیستم های پشتیبانی تصمیم گیری درمانی برای پیش بینی و تشخیص بیماری های مختلف با دقت مناسب استفاده شده است. به دلیل توانایی آنها در شناسایی الگوها و روابط پنهان بین داده های پزشکی، این تکنیک ها در طراحی سیستم های پشتیبانی درمانی بسیار موثر واقع شده اند. یکی از مهمترین کاربردهای چنین سیستم هایی در شناسایی بیماری های قلبی نهفته است، چراکه این بیماری یکی از عوامل اصلی مرگ و میر در دنیا است. تقریبا تمام سیستم هایی که بیماری های قلبی را پیش بینی می کنند از مجموعه داده های درمانی با پارامترها و ورودی ها از آزمایش های پیچیده ی استفاده می کنند. هیچکدام از این سیستم ها، بیماری های قلبی را بر اساس عوامل خطر مثل سن، سابقه ی خانوادگی، دیابت، فشار خون بالا، کلسترول بالا، مصرف دخانیات، مصرف الکل، چاقی، و یا کم فعالیتی فیزیکی تشخیص نمی دهند. بیماران قلبی بسیاری از این عوامل خطر را در خود دارند که می توان از آنها برای شناسایی بیماری استفاده کرد. سیستم های مبتنی بر چنین عوامل خطری نه تنها به افراد متخصص کمک می کند، بلکه می تواند هشدار به موقعی برای بیماران در مورد حضور احتمالی بیماری قلبی در وی قبل از حضور در بیمارستان یا انجام چکاپ های پرهزینه فراهم سازد. از این رو، این مقاله به ارائه تکنیکی برای پیش بینی بیماری های قلبی بوسیله عوامل خطر می پردازد. این تکنیک حاوی دو مورد از موفق ترین ابزارهای داده کاوی، شبکه های عصبی و الگوریتم های ژنتیکی می باشد. سیستم ترکیبی پیاده سازی شده از مزیت بهینه سازی جهانی الگوریتم ژنتیک برای تشکیل بارهای شبکه عصبی بهره می برد. یادگیری این الگوریتم در مقایسه با انتشار به عقب، سریع تر، پایدارتر و دقیق تر است. این سیستم در Matlab پیاده سازی شده است و بیماری های قلبی را با دقت 89 درصد پیش بینی می کند.

بیماری های قلبی عامل اول مرگ و میر در سطح جهان است. در سال 2008، حدود 17.3 میلیون نفر به دلیل بیماری های قلبی مردند که 20 درصد تمام مرگ ومیر ها را تشکیل می داد. از این مقدار، حدود 7.3 میلیون مورد به دلیل بیماری عروق کرونر بود و 6.2 میلیون مورد نیر به دلیل سکته رخ داده بود. تحقیقات اخیر در زمینه ی داروی توانسته عوامل خطری را شناسایی کند که به توسعه بیماری های قلبی کمک می کنند؛ با این حال، تحقیقات بیشتری برای استفاده از این دانش در کاهش رخداد بیماری های قلبی لازم است. دیابت، فشار خون و کلسترول بالا به عنوان عوامل خطرزای اصلی در بیماری های قلبی شناسایی شده اند.

عوامل خطر مربوطه به سبک زندگی مثل عادات غذایی، کم تحرکی، مصرف الکل و دخانیات و چاقی نیز از عوامل مهم بیماری های قلبی به حساب می آیند. مطالعات متعددی نشان می دهند که کاهش این عوامل خطر می تواند در جلوگیری از بیماری های قلبی تاثیر زیادی داشته باشد. تحقیقات زیادی بر روی جلوگیری از خطر بیماری های قلبی وجود دارد. داده ها از مطالعات جمعیت شناختی در پیش بینی بیماری های قلبی بر اساس فشار خون، عادات دخانی، سطوح کلسترول و فشار خون و دیابت موثر واقع شده اند. محققان از این الگوریتم های پیش بینی در قالب های سازگاریافته از برگه های امتیازدهی ساده سازی شده استفاده کرده اند تا بیماران بتوانند ریسک بیماری های قلبی خود را محاسبه کنند. نمره خطر فرامینگهام (FRS) یک معیار پیش بینی خطر است که در الگوریتم های پیش بینی بیماری های قلبی استفاده شده است.
این مطالعه با هدف توسعه ی یک سیستم داده کاوی هوشمند بر اساس شبکه های عصبی بهینه شده با الگوریتم ژنتیک برای پیش بینی بیماری قلبی بر اساس دسته بندی های عوامل خطر انجام شده است. این سیستم بوسیله MATLAB R2012a پیاده سازی شده است.

2. تکنیک های داده کاوی

تکنیک های داده کاوی برای کاوش، تحلیل و شناسایی داده های پزشکی بوسیله ی الگوریتم ها پیچیده برای کشف الگوهای نامشخص استفاده شده است. محققان از تکنیک های داده کاوی برای شناسایی بسیاری از بیماری ها همچون بیماری های قلبی، سکته، دیابت و سرطان استفاده می کنند. بسیاری از تکنیک های داده کاوی برای شناسایی بیماری های قلبی با دقتی مناسب استفاده شده است. محققان از تکنیک های داده کاوی مختلفی مثل بیزی، شبکه عصبی، درخت تصمیم گیری، چگالی کرنل و ماشین بردار پشتیبانی برای پیش بینی و تشخیص بیماری های قلبی استفاده کرده اند. یکی از این سیستم ها از دسته بندی یادگیری عصبی برای دسته بندی وظیفه های داده کاوی و نشان داد که این سیستم دسته بندی عملکردی مشابه به سیستم دسته بندی نظارتی دارد. سیستم پیش بینی حمله قلب موثر و هوشمند (IEHPS) بر اساس شبکه های عصبی و داده کاوی ساخته شده است و استخراج الگوهای قابل توجه برای پیش بینی بیماری قلبی بوسیله خوشه بندی K ابزاری را در دستور کار قرار داد. این سیستم از الگوریتم MAFIA برای کاوش الگوهای فراوان استفاده می کند. پولاتت و همکاران، بوسیله فازی ترکیبی و رویکرد k نزدیک ترین همسایه، یک سیستم برای پیش بینی بیماری های قلبی طراحی کردند که 87 درصد در شناسایی دقت داشت. در یک سیستم دیگر، شبکه ی عصبی برای شناسایی بیماری های قلبی با دقت 89.01 درصد بکار گرفته شد. لاتا و سابرامایان در سال 2007 یک سیستم پیش بینی بیماری های قلبی بوسیله الگوریتم ژنتیک و CANFIS پیشنهاد کردند که خطای میانگین مربعات آن پایین بود. با تحلیل تکنیک های مطرح شده، این مقاله به معرفی یک سیستم جدید با استفاده از الگوریتم های ژنتیکی و شبکه عصبی برای پیش بینی خطر بیماری های قلب پرداخته است. الگوریتم ژنتیک برای بهینه سازی شبکه عصبی استفاده شده است. در این مقاله، برای اولین یک الگوریتم ترکیبی بر روی عوامل خطر برای بهبود دقت پیش بینی بیماری های قلبی استفاده شده است. در نتیجه، هدف اصلی در اینجا، استفاده از این سیستم در پشتیبانی تصمیم گیری درمانی به عنوان شاخص ریسک است تا افراد بتوانند این ریسک ها را بدون ابتلا به بیماری های قلبی در آینده کاهش دهند.این مقاله ادامه دارد........ترجمه  itrans.ir

 

- نظرات

برای ارسال نظر، لطفا وارد حساب خود شوید یا ثبت نام نمایید.